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SUMMARY

This paper investigates the performance of preconditioned Krylov subspace methods used in a previously
presented two-fluid model developed for the simulation of separated and intermittent gas–liquid flows.
The two-fluid model has momentum and mass balances for each phase. The equations comprising this
model are solved numerically by applying a two-step semi-implicit time integration procedure. A finite
difference numerical scheme with a staggered mesh is used. Previously, the resulting linear algebraic
equations were solved by a Gaussian band solver. In this study, these algebraic equations are also solved
using the generalized minimum residual (GMRES) and the biconjugate gradient stabilized (Bi-CGSTAB)
Krylov subspace iterative methods preconditioned with incomplete LU factorization using the ILUT(p, t)
algorithm. The decrease in the computational time using the iterative solvers instead of the Gaussian
band solver is shown to be considerable. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The nuclear industry, the petroleum industry and the chemical process industry, to mention a
few, are all users of multiphase/multicomponent flow technology. One example is the transport
of oil and gas in pipelines, which can now be modelled by several one-dimensional, two/three-
phase flow codes (OLGA [1], PLAC [2], PEPITE [3], etc.). In order to model these complex
three-dimensional flow patterns with one-dimensional models, many simplifications are intro-
duced, guided by extensive experimental investigations. Several general purpose codes (FLU-
ENT [4], PHOENICS [5], FIDAP [6], etc.) have two- and three-dimensional models for at least
two-phase/two-component flows. Industrial applications may comprise turbulent multiphase
flow in complex geometries for which closure laws for these two- and three-dimensional
models can be a weak point. To easily test new and improved closure laws, usually based on
experimental investigations, there is a need for robust and fast numerical methods. Popular
numerical methods used for multiphase flows, like IPSA [7], SIMPLE-2P [8] and PISO-2P [9],
solve the equations sequentially with many iterations to obtain a converged solution. The
difficulty with these methods for obtaining a converged solution is in favour of more coupled
solution strategies. On the other hand, more coupled solution methods demand good algebraic
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equation solvers. In this work, we investigate the behaviour of preconditioned Krylov subspace
methods for solving algebraic equations systems resulting from a coupled solution strategy
implemented by Moe and Bendiksen [10] for the two-fluid model [11,12].

The two-fluid model comprises conservation equations for two ‘continuous fluids’ coexisting
in each point in the computational domain. In this work, the two fluids are liquid and gas. The
fluids can be separated (two continuous phases) and/or distributed (bubbles in liquid, droplets
in gas). The model has been used [10,13] to simulate the broken dam problem, collapse of a
liquid column, separation of mixed gas and liquid, propagation of a single Taylor bubble in
horizontal and inclined channels and the initiation of slugs in upward inclined channels. By
specifying a zero fraction of one of the fluids, single-phase flow cases have been simulated as
well.

In the numerical solution procedure implemented by Moe and Bendiksen [10], a pressure
equation is solved simultaneously with the momentum equations for the two phases. Mass
equations for each phase are solved in a separate step. This two step procedure introduces
small errors only. The method is aimed at transient flows and at each time step a source/sink
term is added to the pressure equation to correct the errors introduced at the previous time
step. With this correction, a robust non-iterative scheme is obtained. In previous works [10,13],
the algebraic equation system resulting from the discretization of the pressure and momentum
equations as well as for the mass equations, were solved with a Gaussian band solver. In the
present work, the pressure–momentum algebraic equations are also solved with precondi-
tioned Krylov subspace iterative algorithms [14]. The algebraic mass equations, which are
considerably faster to solve, are still solved with the Gaussian band solver.

Krylov subspace methods are one of the most popular iterative methods for solving sparse
linear systems. The most well known of these methods are probably the conjugate gradient
(CG) algorithm due to Hestenes and Steifel [15] applicable to symmetric positive-definite
matrices. However, the matrix resulting from the discretized pressure–momentum system is
asymmetric and indefinite and we have used the GMRES algorithm of Saad and Schultz [16]
and the Bi-CGSTAB algorithm of Van der Vorst [17]. To obtain a good convergence rate for
Krylov subspace methods applied to computational fluid dynamics (CFD) problems, the
equation systems require preconditioning, see, e.g. Rusten and Winther [18], Elman and
Sylvester [19], Ajmani and Ng [20], and Liang and Lan [21], who all applied preconditioned
Krylov subspace methods. In the present work the incomplete LU factorization algorithm
ILUT(p, t) [22] is used as a preconditioner. Here, p is the maximum fill-in allowed and t is a
threshold value used to reduce the fill-in. The implementations of the ILUT(p,t), GMRES and
Bi-CGSTAB algorithms used were the ones found in the SPARSKIT library due to Saad [23].

2. PHYSICAL TWO-FLUID MODEL

Local instantaneous conservation equations for each phase with transfer rates of mass,
momentum and energy at all interfaces can, in principle, be written for a two-phase flow
system. It is only possible to solve this system for the simplest cases. However, in many
practical applications average quantities are of primary interest. One approach is thus to
time/ensemble and space-average the equations to obtain the simpler two-fluid model for the
average fields (see, e.g. Ishii [12] or Banerjee and Chan [24]). In the averaging process new
‘unknown’ quantities appears. To close the equation system these new terms must be modelled.
The closure of the two-fluid model used in this work was outlined by Moe and Bendiksen [10].
Here we only state the main assumptions and present the resulting equations. Two dimensional
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Cartesian and axisymmetric problems are regarded where y denotes the vertical or radial
direction and x denotes the horizontal or axial direction.

2.1. Mass and momentum conser6ation equations

The fluids are assumed Newtonian and compressible subject to a constant gravitational
body force component. Surface tension between the two phases is neglected and a common
pressure field is applied. Constant temperature is assumed. Mass transfer between the phases
is neglected and the interactions between the two phases are restricted to skin friction only.
Since we have no knowledge of where the interfaces are located, or of their direction, the skin
friction force will have a component in both directions and will be applied to the whole
computational domain. The mass and momentum balances for each phase k (k= l, g) are
expressed as follows:

(
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where uk denotes the phase velocity, ur the relative velocity between the two phases, p the
pressure, rk the density, mk,eff the effective dynamic viscosity, g the acceleration due to gravity
(vertical direction), ak the volumetric fraction of phase k, ( )T the transpose and I denotes the
identity matrix. The conservation of volume is expressed as ag+al=1. Fki is the interfacial
drag coefficient given by
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where Si and A are the interfacial perimeter and the volume of the discrete control volume
respectively. Different models for the interfacial friction factors l i

x and l i
y were tested by Moe

and Bendiksen [10]. We have used the constant values l i
y=10−3 and l i

x=106, entailing a
weak coupling in the vertical direction and a strong coupling (no-slip) in the horizontal
direction. This model gave reasonable results for the different cases tested by Moe and
Bendisken [10] and Moe [13]. The effective viscosity is given by mk,eff=mk+mk

T, where mk and
mk

T are the molecular and eddy viscosity respectively. The eddy viscosity is modelled by the
modified Prandtl mixing length formula [10]
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where the formula of Nikuradse [25] for single-phase flow is used for the mixing length lm. 6k
and uk denote the velocity components in the y- and x-directions respectively.

2.2. Equation of state and pressure equation

Compressible flow is assumed with the density given by an equation of state rk=rk(p, T).
With the assumption of a constant temperature, an equation for the pressure is obtained by
expanding the transient terms in the mass conservation equations (using the equation of state),
dividing by the densities and adding the resulting equations. The pressure equation reads:
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2.3. Boundary and initial conditions

At the inlet of a pipe or a channel, the velocities and the phase fractions of each phase are
specified. At the outlet of a pipe, a hydrostatic pressure profile is used. In the case of closed
inlet or outlet boundaries, zero-velocity type boundary conditions are imposed. Boundary
conditions for velocity components parallel to the walls are either no-slip or free-slip boundary
conditions. The normal-to-wall velocity components are set to zero. Initial conditions have to
be specified for phase fractions and velocities. The initial pressure field is then calculated
according to hydrostatic conditions.

3. NUMERICAL METHOD

Equations (1), (2) and (5) together with the constitutive relations described above yield a set
of time-dependent coupled non-linear partial differential equations (PDEs). These equations
are solved using a backward Euler semi-implicit finite difference scheme as outlined in detail
by Moe and Bendiksen [10]. Here we will first give a brief overview of the overall method
before presenting in more detail the solution of the algebraic equations with preconditioned
Krylov subspace methods. As indicated in Figure 1, a staggered spatial grid with scalars stored
in the centre of the control volumes and the velocity component stored on the boundaries is
applied.

Using implicit time integration, the tight coupling between the different flow field variables
requires, in general, a simultaneous or iterative solution of these equations. In the numerical
method used in this work each time step is split into two parts. First, the momentum equations
and the pressure equation are solved simultaneously using old masses, and second, the mass
equations are solved using the most recent velocity field. This decoupling is a part of the
linearization of the equation system and generally the non-linear full equation set is not
satisfied after these two steps. Especially, it is observed that this two-step procedure gives a
mismatch between conservation of specific mass and the volume fractions. This is because the
density is calculated from the pressure and volume fraction times density equals specific mass.
One way of remedying this error, as well as other errors due to the linearization of the

Figure 1. Finite difference staggered grid scheme.
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Figure 2. Pressure–velocity matrix structure.

equation set, would be to iterate by repeating the two above-described steps until convergence.
This is not performed, however, instead a source/sink term based on the mass/volume fraction
errors is added to the pressure equation at the next time point. With this correction the method
has been experienced to give a stable solution with small mass/volume fraction errors only. The
time step is limited by the Courant–Friedrich–Levi (CFL) criterion: DtBmin(Dxj/uk, Dyi/6k),
where uk and 6k are the phase velocities and Dxj and Dyi are the spatial control volume lengths
in the x- and y-directions respectively.

For each of the two steps described above, an algebraic equation system Ax=b has to be
solved. The matrices A are banded and sparse. With N nodes in the x-direction and M nodes
in the y-direction, the bandwidth and length of the pressure–velocity matrix become 10M−3
and N(5M−2) respectively. In Figure 2, a sketch of the structure of this matrix as well as the
ordering of the five unknowns are shown. Beginning on the left of the domain, the y-direction
index runs first over the momentum equations in the x-direction followed by the pressure
equation and the momentum equations in the y-direction, before advancing one step in the
x-direction and repeating the procedure.

In the present work we have used both a Gaussian elimination band solver as well as Krylov
subspace iterative algorithms [14] to solve the discretized pressure–momentum equations. The
mass equation systems are solved by Gaussian elimination.

A Krylov subspace is given by Km(A, 6)=Span{6, A6, . . . , Am−16} and a Krylov subspace
method can be regarded as a projections method onto a subspace K=x0+Km(A, r0) in which
an approximation xm to the solution of the equations system lies. Here x0 and r0 are the initial
guess and the resulting residue respectively and m is the number of iterations. The projection
is found by imposing that the residual vector r=b−Ax is orthogonal to m independent
vectors that span a subspace L. The most well known of these methods are probably the
conjugate gradient (CG) method applicable to symmetric positive definite matrices. However,
the matrix resulting from the discretized pressure–velocity system is asymmetric and indefinite
and we have used the more general applicable algorithms; restarted GMRES [16] and
Bi-CGSTAB [17].

The GMRES algorithm is based on creating an orthonormal basis for the Krylov subspace
using the Arnoldi orthogonalization method [14], and minimalization of the residue norm over
all vectors in K. The subspace L is then equal to AKm. However, there is a potential storage
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(and computational) problem with the Arnoldi orthogonalization method for large m since all
bases vectors for the Krylov subspace must be saved and used in the calculations. This is
circumvented by restarting the algorithm after M iterations and using xm as the new initial
guess x0. In this work, M was taken as 15. The Bi-CGSTAB algorithm on the other hand can
be regarded as based on Lanczos biorthogonalization [14], where non-orthogonal bases for the
two Krylov subspaces Km(A, 61) and Km(AT, w1) are built such that the bases vectors 6i and wj

for the two subspaces are biorthogonal, i.e. (6i, wj)=dij. In this procedure there is no need for
storing the bases vectors and a simple recursion results. Note that the actual calculations with
the transpose matrix AT are avoided in the Bi-CGSTAB algorithm.

It has already been mentioned that matrices resulting from CFD problems are poorly
conditioned and there is a need for preconditioning the matrices to obtain reasonable
convergence rates for Krylov subspace methods. This is also the case for our pressure–velocity
matrix. We apply a right preconditioner and the matrix system reads

AM−1u=b, M−1u=x.

The solution of the new unknown u is sought in the right preconditioned subspace K=u0+
Km(AM−1, r0). For the preconditioner we have used the ILUT(p, t) algorithm [22], which is an
incomplete LU factorization of A. Our matrix A is a banded sparse matrix with many zeros
within the band as indicated in Figure 2. In an LU factorization these zeros will typically be
replaced by non-zero values. In an incomplete factorization one seeks to retain some (or all)
of the sparseness of the original matrix A by applying a dropping strategy to each non-zero
coefficient of the L and U factors. Three rules have been followed [22]. First, the locations with
non-zero values in the original matrix A have been retained. Second, a coefficient in row i is
dropped if its absolute value is less than the relative tolerance ti obtained by multiplying the
given value t by the original norm of the ith row. Third, only the p largest coefficients in row
i in L and the p largest coefficients in row i in U are kept (in addition to the coefficient kept
obeying the first rule).

4. PRESENTATION AND DISCUSSION OF RESULTS

The model has been developed for separated gas–liquid flows. However, single-phase flow is
a simplified case where the gas or liquid volume fraction is set to zero. Three different cases
have been simulated; single-phase turbulent channel flow, propagation of an elongated bubble
in a channel and the broken dam problem. We are interested in the performance of the
equation solvers and refer to the previous works [10,13] for a more detailed presentation of the
flow field for these cases.

4.1. Single-phase turbulent pipe flow

Moe and Bendiksen [10] showed that the presented model and numerical method reproduced
the analytical laminar solution for single-phase flow in a horizontal channel and in a pipe.
They also simulated single-phase turbulent pipe flow, the case we have chosen to investigate
here. Three different grid resolutions have been used. In the axial flow direction (x-direction)
the number of nodes was 20, 30 and 40, corresponding to 6, 9 and 12 nodes respectively in the
radial direction (y-direction). From experience, a relative error tolerance of 1.0E−7 for
stopping the iterations of the iterative solver is sufficient to obtain a solution that agreed with
the one obtained with the Gaussian band solver. If the number of iterations for a time step
exceeded 300 the simulation was terminated. The threshold value for ILUT was 1.0E−6.
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Table I. Single-phase turbulent pipe flow simulations: comparisons of used CPU
time per time step for the different equation solvers

Gauss (CPU s) P-GMRES (CPU s)Grid P-Bi-CGSTAB (CPU s)

0.49 0.1120×6 0.11
30×9 2.77 0.50 0.52
40×12 10.4 1.51 1.55

In Table I, CPU time per time step for solving the pressure–momentum equation system for
the different equations solvers are shown. It can be seen that the ILUT preconditioned
GMRES (P-GMRES) and Bi-CGSTAB (P-BICGSTAB) equations solvers results in similar
CPU times. For the course grid these iterative solvers are about 4.5 times faster than the direct
Gaussian band solver, while for the finest grid, the speed-up has increased to about 6.8 times.
In Figure 3, used CPU time per time step for the preconditioned iterative solvers are shown as
function of fill-in. For the 20×6 grid, a fill-in of 9 was necessary to reach the error tolerance
in less than 300 iterations per time step. For the 30×9 and 40×12 grids the minimum fill-in
were increased to 15 and 20 respectively. It is seen that there are very small differences between
the two different Krylov subspace methods. In Figure 4 the CPU times for the preconditioned
GMRES algorithm are split into the parts used by the ILUT preconditioner and the GMRES
equation solver. It is seen that initially the preconditioner cost increases while the GMRES
cost decreases with increasing fill-in until constant values are reached. The decrease in the cost
for the GMRES algorithm with increasing fill-in is caused by a reduced number of iterations,
as shown in Figure 5. Note that the number of iterations for the three different grid resolutions
become the same with increasing fill-in.

Figure 3. Average CPU time for a time step as function of fill-in for the preconditioned GMRES and BICGSTAB
algorithms.
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Figure 4. Average CPU time for a time step as function of fill-in for the ILUT preconditioner and the GMRES
equation solver.

Figure 5. Maximum and average number of iterations for a time step using the P-GMRES algorithm.

4.2. Propagation of a single Taylor bubble in a horizontal channel

The propagation of an elongated bubble in a channel of height 0.7 m initially filled with
liquid, closed at one end and open to the atmosphere at the other, has been simulated. The
fluid properties used were those of water and air. The interface is assumed to be located where
the volumetric fraction is 0.5. Using this approach, the calculated bubble shape and velocity
field in the liquid for a given time point are shown in Figure 6.
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Figure 6. Calculated bubble shape and liquid velocity field.

The same three grid resolutions are used for this case as for the single-phase flow case. In
Table II used CPU time per time step for solving the pressure–momentum equation system for
the different equations solvers are shown. Also for this case it is seen the preconditioned
Krylov subspace solvers use very similar CPU time. For the course grid, the iterative solvers
are about 2.1 times faster than the Gaussian band solver, while for the finest grid, the speed-up
has increased to about four times. Comparing with the single-phase flow case (see Table I) it
is seen that the Gaussian solver uses the same CPU time for both cases, while the used CPU
time for the iterative methods are about twice as large for the two-phase flow case. This
difference for the iterative solvers performance for single-phase to two-phase flow is probably
mainly caused by the reduction in the number of dependent variables. For single-phase flow
cases, the off-diagonal elements in the rows corresponding to the missing phase are zero. There
will thus be zero fill-in for these rows. This reduction of the system is not utilized by the
Gaussian band solver. Note also that for a single-phase flow case there will initially only be
five non-zero coefficients per row, while for two-phase flow cases there is nine non-zero
coefficients per row.

In Figure 7 the used CPU time per time step for the preconditioned iterative solvers are
shown as function of fill-in. For the 20×6 grid a fill-in of 11 was necessary to reach the error
tolerance in less than 300 iterations per time step. For the 30×9 and 40×12 grids, the
minimum fill-ins were increased to 16 and 23 respectively. It is seen that there are small
differences between the two different Krylov subspace methods. In Figure 8 the CPU times for
the preconditioned GMRES algorithm are split into the parts used by the ILUT precondi-
tioner and the GMRES equation solver. It is seen that initially the preconditioner cost
increases while the GMRES cost decreases with increasing fill-in until constant values are
reached. In Figure 9, the effect of the threshold value is shown by plotting the total CPU time
for the preconditioned GMRES and Bi-CGSTAB algorithms as function of fill-in. Of the three
threshold values tested, 1.0E−6 gives the most effective solvers. In Figure 10 the correspond-
ing iterations for the preconditioned GMRES algorithm for the three different threshold values
are shown. The threshold value 1.0E−6 gives the lowest number of iterations.

Table II. Propagating Taylor bubble simulations: comparisons of used CPU time per time step for the
different equation solvers

Grid Gauss/P-GMRESP-Bi-CGSTAB (CPU s)P-GMRES (CPU s)Gauss (CPU s)

0.24 0.23 2.120×6 0.51
2.7230×9 0.91 0.9 3

10.3 2.56 2.54 440×12
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Figure 7. Average CPU time used per time step as function of fill-in for the P-GMRES and Bi-CGSTAB algorithms.
The threshold value is setequal to 1.0E−6.

Figure 8. Average CPU time used per time step as function of fill-in for the ILUT preconditioner and the GMRES
equation solver. The threshold value is set equal to 1.0E−6.

4.3. Broken dam problem

A rectangular column of water in hydrostatic equilibrium is confined between two vertical
walls and a horizontal bottom. The right wall is suddenly removed, and the water column
starts to collapse under the influence of gravity. The initial column is 1.0 m wide and 2.0 m
high. Test fluids are water and air at atmospheric conditions. In Figure 11 contour lines of the
void fraction equal to 0.5 is shown for six different time points. Both results using the
Gaussian band solver and the GMRES iterative solver are presented. The two equation solvers
give almost identical results and the contour lines can scarcely be separated in this plot. This
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Figure 9. Total used CPU time as function of fill-in for the P-GMRES and Bi-CGSTAB equation solvers are shown
for three different threshold values. The grid is 20×6 and 67 time steps have been performed.

Figure 10. Maximum and average iterations per time step for the GMRES equation solver are shown for three
different threshold values. The grid is 20×6 and 67 time steps have been performed.

is taken as an indication for that the error tolerance 1.0E−7 for terminating the iterations of
the GMRES algorithm was sufficient low, remembering that Gaussian elimination gives the
exact solution. A threshold value of 1.0E−4 was used.

In Table III used CPU time per time step for solving the pressure–momentum equation
system for the different equations solvers are shown. Also for this case it is seen the
preconditioned Krylov subspace solvers use very similar CPU time. For the course grid, the

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1141–1156 (1999)
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Table III. Broken dam simulations: comparisons of used CPU time for the different equation
solvers

Gauss (CPU s) GMRES (CPU s) Bi-CGSTAB (CPU s) Gauss/GMRESGrid

152 45 4820×10 3.4
247 5.425330×15 1343
790 820 6.540×20 5300

Figure 11. Free surface evolution in the broken dam case. Contour lines for the volumetric fraction 0.5 are shown for
six different times. Results of both the Gaussian band solver and the GMRES iterative solver are plotted, but can

scarcely be separated.

iterative solvers are about 3.4 times faster than the Gaussian band solver, while for the finest
grid the speed-up has increased to about 6.5 times. Note that the grids are more refined for this
case than the two previous ones, explaining the improved speed-up compared with the Taylor
bubble case. In Figure 12, used CPU time per time step for the preconditioned iterative solvers
are shown as a function of fill-in. For the 20×10 grid, a fill-in of 18 was necessary to reach
the error tolerance in less than 300 iterations per time step. For the 30×15 and 40×20 grids,
the minimum fill-ins were increased to 28 and 40 respectively. It is seen that there are small
differences between the two Krylov subspace methods. In Figure 13, the CPU times for the
preconditioned GMRES algorithm are split into the parts used by the ILUT preconditioner
and the GMRES equation solver. It is seen that initially the preconditioner cost increases while
the GMRES cost decreases with increasing fill-in until constant values are reached. The
decrease in the cost for the GMRES algorithm with increasing fill-in is caused by a reduced
number of iterations, as shown in Figure 14.

4.4. Fill-in of the lower (L) and upper (U) matrices

We have seen that the necessary numbers of fill-in to obtain ‘reasonable’ convergence rates
(less than 300 iterations in one time step) seem to increase with the size of the A matrix. It
turns out that the relative fill-in, defined as the number of fill-ins of the L and U matrices
divided by number of initially zero coefficients within the band of the lower and upper part of
the A matrix, is fairly constant. The bandwidth of the A matrix is equal to 10M−3, where M
is the number of nodes in the y-direction. From this number, we subtract 9, which is the
non-zero coefficients in the band and divide by 2 to obtain the number of zeroes in the lower
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Figure 12. Total used CPU time for the P-GMRES and Bi-CGSTAB algorithms.

Figure 13. CPU time used as function of fill-in for the ILUT preconditioner and the GMRES equation solver.

and upper parts. In Table IV we have shown the minimum and relative fill-in for the different
cases and grid resolutions. TB denotes the Taylor bubble case and BD denotes the broken dam
case. It is seen that the relative fill-in is fairly constant with an average of about 43%.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1141–1156 (1999)
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Figure 14. Maximum and average number of iterations per time step using the preconditioned GMRES algorithm.

Table IV. Relative fill-in of the lower (L) and upper (U) matrices

Grid Minimum fill-in % Relative fill-inCase

20×6 11TB 46
30×9 16TB 41
20×10 18BD 41

TB 40×12 23 43
30×15 28BD 41
40×20 40BD 43

We have disregarded the single-phase flow case in this analysis since the A matrix is not
optimally stored for single-phase flow problems.

5. CONCLUSIONS

Preconditioned GMRES [16] and the Bi-CGSTAB [17] algorithms have been used in solving a
two-fluid model developed for simulation of separated and intermittent gas–liquid flows. The
preconditioner was the ILUT(p, t) algorithm [22]. The two-fluid model has one pressure
equation and momentum and mass balances for each phase. The numerical method applies a
two-step semi-implicit time integration procedure. First, a pressure equation is solved simulta-
neously with the momentum equations for the two phases, then the mass equations for each
phase are solved. For the first step, both the two iterative algorithms, as well as a Gaussian
band direct solver, were used, while only the Gaussian solver was applied for the second, much
faster, step. There were only small differences between the performance of the preconditioned
GMRES and the Bi-CGSTAB algorithms. The computational time using these iterative
methods was from 2 to 6 times shorter than when using the Gaussian band solver. The
speed-up in computational time increased with the number of unknowns. Only relatively small
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cases up to 800 nodes were tested, since the computational time using the Gaussian solver then
started to become large. It was seen that the preconditioner was more time-demanding than
the iterative solvers. The fill-in parameter for the preconditioner increased with the number of
unknowns. With more unknowns, the bandwidth of the matrix increased as well and we
observed that the fill-in was about 43% of the bandwidth. This is not completely satisfactory
and since the iterative solvers GMRES and Bi-CGSTAB are known to be two of the most
robust Krylov subspace methods, improvements should probably be sought in the precondi-
tioning step. The final conclusion is that the efficiency of the presented robust numerical
method has been improved considerably, but that there is possibly room for more improve-
ments on the preconditioning of the equation system.
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